



# SCALES: Scalable Analysis and Logging of Event Systems

Ke-Thia Yao, Bob MacGregor, Bob Neches Bob Lucas, Dan Davis

University of Southern California Information Sciences Institute



## JFCOM J-9 Distributed Continuous Experimentation Environment









# **Playbox**

- PacificRim
- 105W-90E
- **50N-50S**





# Sample Scenario

- Terrorists take over parts of Philippines
- Disaster in Japan
- Dirty Bomb in Singapore





## **Basic Problem**









## Problems Exacerbated by Scale: 1+ Million Entities



- Sheer number of entities
  - Overwhelm communications and hardware
  - Overwhelm human operator's ability to simultaneously control entities
- Heterogeneous computing resources
  - Distributed
  - Multiple SPP with varying CPU, Memory, Bandwidth complicates resource utilization



#### **Areas of Focus**



- Simulation setup
  - Are there sufficient computing resources to support the desired simulation scenario?
  - How to define the initial condition of the simulation?
- Simulation visualization and understanding
  - How to monitor and analyze what the simulation is doing?
- Simulation control
  - How to adjust the simulation to keep it within expected bounds?



### Maximally Effective Use of Simulation Data Logs for Analysis





#### **Military Users**

- Measure effectiveness: situation awareness, precision engagement/collateral damage, etc.
- Compare and contrast: e.g., evaluate simulation ground truth against sensor observations
- Near real time control; Quantify lessons learned

# SCALES: Data Logging and Analysis



#### **Simulator Developers**

- Better debugging environment: e.g. check pointing and simulation restarts
- Check simulation events/patterns against expected behavior to find anomalous behavior
- Higher fidelity simulations



#### **Infrastructure Managers**

- Monitor CPU / memory / network resource usage, correlate with activity
- Discover faults and resource usage bottlenecks
- Higher fidelity battlefield monitoring; Larger, faster simulations



# What We Are up Against: Million-entity Data Profile



- High data rate
  - Selective logging for analysis (FCS exercise)
    - 100 MB/hour for 20,000 entities (~500 non-clutter)
    - 1 million entities => 5 GB/hour
  - Full logging for playback
    - 2 GB/hour for 10,000 entities
    - 1 million entities => 200 GB/hour
- Huge amount of data
  - 1 million entities for 5 day event
    - 8 Terabytes
    - ~5 days to transfer data using dedicated OC-3 line (155Mb/s)
    - ~2 weeks to transfer data using dedicated T3 line (45Mb/s)



## Two Key Challenges



- Collect the "fire hoses" of data generated by large-scale distributed sensor rich environments
  - Without interfering with battlefield communication
  - Without interfering with simulator performance
- Maximally exploit the collected data efficiently
  - Without overwhelming users and without losing critical content

Target: unified distributed logging/analysis infrastructure, helps military users and computing/networking infrastructure managers



# Approach



#### Provide better component metadata

- Help designers express what they have created
- Help other designers understand what they're working with

#### 2. Provide metadata-level scripting mechanism

Help designers assemble software applications

#### 3. Provide software gauges

- Help application developers make component selections
- Help component developers insert new components into the component database
- Help system architects/administrators make application adaptations



# Scalable, Minimally-Intrusive Real-Time Data Capture



- SCALES solution: use parallelism at every phase
  - Minimize network communication overhead by
    - Logging distributed data near point of generation
    - Selectively propagating data based on need
  - Maximize use of computation resources by distributing analyses across light-weight DBMS's at each site
  - Multi-modal exploration engineered to work with distributed data to aid mining, analysis, and visualization



# MRI: Monitoring Remote Imaging





- Monitors resource usage of remote computing nodes
- Displays resource usage in context of connection architecture
- Stores data for post-mortem analysis
  - Types of resources monitored: CPU, memory, network traffic (bytes, packets)
  - Display types: pie charts, time series



# Semantic Interoperability Measures: Using Multi-level Architecture Views to Overcome Faults/Bottlenecks



- Software architecture views enable dynamic, rapid response to faults by
  - Providing visibility into software systems
  - Identifying control points to adjust their behavior
- Multi-level views offer a greater range of adjustments than any single level
  - A system architecture view enables dynamic adjustment of servers:
    - Create additional server to accommodate increased demand
    - Migrate server from overloaded host to new host
  - A dataflow architecture view enables reformulation of an application:
    - Substitute alternative type of service for non-functioning or unavailable service
- Simulation and info. mgt. applications provide testbed for monitoring/repairing faults
  - GeoTopics "Hot News" Portal application executes as 120 individual components

#### **Dataflow Architecture View**

- Load dataflow architecture; extend it at run-time
- Update dataflow architecture to replace malfunctioning service at run-time

System Architectural View

- Detect overloaded server; re-host the service
- Update system architecture automatically to reflect re-hosted service



Real World:
Automatically Detect
Overloaded Host

Real World:
Automatically Detect
Overloaded Host

Nigrate Servers from the Overloaded Host (99% speedup of architectural revision; hours to seconds)



## Multi-Modal Exploitation



- Coordinate alternative graphical presentations helps users understand data
  - Maps, tables, charts, time-based animations
- "Temporal peripheral vision" helps users notice potentially interesting events
  - Temporal "focus box" accentuates near-by events
- "n-Dimensional filtering"
   helps users home in on relevant data
  - E.g., narrowing temporal focus box and adding entity type constraints



#### N-dimensional Modeling Techniques Enable Mining, Analysis and Visualization



- Dimensions of interest intuitively slice data
  - E.g., geographical AOI, time, entity type, domain, echelon
- Conformed dimensions allow comparison across data sources
  - E.g., comparing simulation ground truth vs sensor observations with respect to same geographical AOI
- Aggregation aids cognitive grasp of larger data sets, improves query performance
  - E.g., summarize detonations at multiple grain sizes (country, state, county, day-of-week, hour, minute)



# Multi-Modal Displays: Map-Based







### Multi-Modal Displays: Tabular













#### **Benefits**



- Operational Users:
  - Improved situational awareness and near real time control
  - Detailed after-action report / lessons learned (same whether derived from live action or training simulations)
- Acquisition Program Managers:
  - Use after-action / lessons learned to evaluate alternatives
  - Capture data from instrumented live action for evaluating impact of alternative technologies in future experiments
  - Test C4ISR systems before deployment
- Systems software support
  - Helps both live action and simulation infrastructure managers discover faults and computational bottlenecks
  - Helps simulation developers create realistic simulations by providing better debugging environments